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Abstract

A method based on a statistical approach of estimating uncertainty in simulating the transport and dispersion of

atmospheric pollutants is developed using observations and modeling results from a tracer experiment in the complex

terrain of the southwestern USA. The method takes into account the compensating nature of the error components by

representing all terms, except dispersion error and variance of stochastic processes. Dispersion error and the variance of

the stochastic error are estimated using the maximum likelihood estimation technique applied to the equation for the

fractional error. Mesoscale Model 5 (MM5) and a Lagrangian random particle dispersion model with three optional

turbulence parameterizations were used as a test bed for method application. Modeled concentrations compared well with

the measurements (correlation coefficients on the order of 0.8). The effects of changing two structural components (the

turbulence parameterization and the model grid vertical resolution) on the magnitude of the dispersion error also were

examined. The expected normalized dispersion error appears to be quite large (up to a factor of three) among model runs

with various turbulence schemes. Tests with increased vertical resolution of the atmospheric model (MM5) improved most

of the dispersion model statistical performance measures, but to a lesser extent compared to selection of a turbulence

parameterization. Method results confirm that structural components of the dispersion model, namely turbulence

parameterizations, have the most influence on the expected dispersion error.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Air quality models are the primary tools for
quantitatively simulating future emission control
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strategies. Air quality models integrate knowledge of
emissions, meteorology, as well as physical and
chemical processes affecting pollutant transport and
dispersion in the atmosphere. Because air quality
models play a central role in design of strategies for
reducing local-scale impacts of pollutants, it is critical
that comprehensive, systematic uncertainty analysis of
these models be undertaken (NRC, 2004).

So far, a unique approach has not been developed
for evaluating models and estimating their
.
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uncertainties and errors. The American Society for
Testing and Materials (ASTM) has issued a
Standard Guide for Statistical Evaluation of Atmo-
spheric Dispersion Model performance (ASTM,
2000). This guide provides information and a series
of options for determining the accuracy of model
predictions and guidance on testing differences
among models. The guide suggests that initial
analysis should focus on determining, on average,
how close to observations each of the models is and
then estimating the significance of differences
among models. Although the guide does not
recommend a specific course of action, it represents
a valuable step toward developing systematic
methods of model evaluation and comparison.

There are three major types of uncertainty in
simulating the transport and dispersion of gases and
particles in the atmosphere: uncertainty due to input
data, uncertainty caused by model physics assump-
tions, and uncertainty due to random variability
(turbulence effects) (Sax and Isakov, 2003; Rao,
2005). Uncertainty due to model physics assump-
tions usually represents a superposition of errors
from both atmospheric and dispersion models. As
noted by Hanna (1994) and Koračin et al. (2000),
even perfect agreement between modeled and
measured concentrations of atmospheric pollutants
and tracers does not necessarily mean that the
atmospheric and dispersion components are behav-
ing properly. As indicated by Weil et al. (1992)
among others, understanding this error requires a
full understanding of the model physics, model
algorithm, and even the actual program code.

The classical approach to estimate uncertainty in
model results, usually referred to as the Monte
Carlo method, is widely used in different applica-
tions (Bergin et al., 1999; Hanna et al., 2001; Sax
and Isakov, 2003). In this approach, the value of an
unknown variable is estimated using a sample of
empirical observations. This approach is computa-
tionally extensive, however, especially for complex
modeling applications.

In this study, we demonstrate use of a computa-
tionally efficient statistical approach for estimating
uncertainty in model parameters and inputs for air
quality modeling applications. This approach uses
the maximum likelihood estimation technique to
quantify uncertainty and identify influential sources
of uncertainty. We have developed a stochastic
model for estimating uncertainty in model results
that accounts for the compensating nature of error
components. The model fractional error has been
represented as a combination of error components
due to emissions, measurements, atmospheric and
dispersion models (total model error), and stochas-
tic processes. By decomposing the total model error
into its atmospheric and dispersion components, we
are able to estimate error in the dispersion
computation as well as to estimate variance of the
stochastic component of the error. The method is
illustrated using observations and modeling results
from a tracer experiment in the complex terrain of
the southwestern USA (Green, 1999; Koračin et al.,
2000; Podnar et al., 2002).

2. A stochastic model for estimating uncertainty in

dispersion modeling

2.1. Fractional error

We define total fractional error (Et) of a predicted
concentration compared to a measured value at a
receptor for each sampling time as

Et ¼
Cp � Co

Ca
, (1)

where Cp and Co are the predicted and observed
concentrations, respectively, and Ca is the average
concentration of Cp and Co. Generally, fractional
error is a useful measure for model evaluation (see,
e.g., Wilson and Flesch, 1993). In contrast to
normalization by Co, we use the average value of
Cp and Co as is done similarly for bias and some
other statistical parameters. For a case when both
Cp and Co are zero, the left-hand side of Eq. (1) is
taken as zero.

2.2. Error components

First, we postulated that total fractional error at a
receptor for each sampling time (Et) is represented
by a function of the following normalized error
components:

Et ¼ f ðEe;Em;Ea;Ed;EsÞ, (2)

where Ee is the emission error, Em is the measure-
ment error, Ea is the atmospheric model and its
input data error, Ed is the dispersion model and its
data error, and Es is the stochastic component of the
total fractional error. Here, we assume linear
superposition of error components, and that the
model and its input data error consist of two major
components: atmospheric model and its input data
error (Ea) and dispersion model and its input data
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error (Ed). Koračin et al. (2000) presented a method
for evaluating atmospheric models using tracer
measurements, which separately computes error
associated with the atmospheric model and its data
error (Ea).

2.3. Dispersion error estimation

Second, since total fractional error (Et) is known
and all other error components (Ee, Em, Ea, and Es)
can be estimated, we can compute the dispersion
and its data error (Ed) as a residual from Eq. (2).
Moreover, since different components of the errors
could be compensating for each other, they can take
either positive or negative values. Consequently, in
the third and final step, the residual (Ed) can be
estimated from the equation for the total fractional
error as

Cp � Co

Ca
¼ �Ee � Em � Ea þResidual ðEdÞ � Es.

(3)

Note that Residual (Ed) can be either positive or
negative depending on the combination of other
errors and the requirement to balance total frac-
tional error on the left-hand side. This formulation
also allows any possible combination of errors.
Even if the total error on the left-hand side is zero,
there still may be a combination of non-zero
compensating errors on the right-hand side of
Eq. (3). The linear form of the expression for the
dispersion model and data error is a first simple step
in estimating this type of error, as shown by others
(e.g., Hanna, 1989; Rao, 2005). Generally, errors
could be nonlinearly related in a fairly complex
manner; however, further methods development is
required to treat this nonlinear interaction.

3. Estimation procedure for the stochastic model

We now turn to statistical formulation of the
error model (Eq. (3)). We have data on observed
and modeled values of tracer concentrations, Co,ij

and Cp,ij, respectively, for each of the n1 days and
each of n2 receptors (i ¼ 1,y,n1, and j ¼ 1,y,n2).
Error term distributions are assumed as follows:
Ee,ij, Em,ij, and Es,ij are independent and identically
distributed with distributions given by N(0, se

2), N(0,
sm
2 ), and N(0, s2), respectively. Finally, since atmo-

spheric error can vary by day, for each i we have
Ea,ij independent and identically distributed N(0,
sa,i

2), where sa,i
2 are daily variances. We assumed
the fractional errors (Cp�Co)/Ca for a given
receptor and a given day are to be sufficiently
normally distributed according to Yij�N(m,
s2+si

2), where s2 is the variance of the stochastic
error component and si

2 denotes the variance of the
combined daily emission, measurement, and atmo-
spheric error components, that is s2i ¼ s2eþ
s2m þ s2a;i. Distribution of Yij’s is normal because
Yij’s are sums of independent normal random
variables. We can then rewrite Eq. (3) as follows:

Y ij ¼ Ee;ij þ Em;ij þ Ea;ij þ mþ Es;ij ; i ¼ 1; . . . ; n1,

j ¼ 1; . . . ; n2, ð4Þ

where m is the Residual (Ed) from Eq. (3).
Our objective is to find the maximum likelihood

estimators (MLEs) for m and s2. For this, we adopt
a well known and widely used statistical technique
of maximum likelihood estimation (Casella and
Berger, 1990). The procedure for finding MLEs
entails finding the maximum of the likelihood
function of Yij’s with respect to m and s2. The
likelihood function is the probability density func-
tion of the random vector Y ¼ ðY1;1; . . . ;Yn1;n2 Þ,
regarded as a function of the parameters m and s2

for a given realization y of Y. The MLEs are the
values for m and s2 which maximize the likelihood
of obtaining data y that was actually observed.
Sometimes, the MLE is clearly and simply defined,
as is the case for m and s2 for a normal distribution,
but is not always the case in more complicated
estimation problems.

For demonstration purposes, we assume that
error component Ei has a normal distribution
denoted by Ei�N(0, si

2). Selection of a statistical
distribution representing the distribution of the
error components is not limited to a normal
distribution. If the specifics of the error components
suggest otherwise, other distributions could be used.
In a simple case, when we assume that the atmo-
spheric error Ea does not change from day to day,
we can obtain explicit solutions for the MLE
problem. These are obtained easily from the known
MLEs for the mean and variance for a sample from
a normal distribution. The MLE for m is

m̂ ¼
1

n1n2

Xn1

i¼1

Xn2

j¼1

yij . (5)

The MLE for s2 is

ŝ2 ¼
1

n1n2

Xn1

i¼1

Xn2

j¼1

ðyij � m̂Þ2 � s2e þ s2m þ s2a
� �

, (6)
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where sa
2 is an estimate of the common atmospheric

error’s variance.
This simple formulation allows us to relatively

easily obtain an estimate of the residual Ed (m),
given the total fractional error (Yij) and the
variances se

2, sm
2 , and sa

2. One significant advantage
is that this method is much less computationally
demanding than a Monte Carlo simulation might
be. Our formulation relies on assumptions about the
distribution of the various components of the total
fractional error, in particular, the assumption of
normality. The method also can be applied in cases
in which the components have other distributional
forms, although these formulations may not be as
simple or as easily implemented.

4. Application of the stochastic model to observed

and simulated concentrations of tracers in complex

terrain

In order to illustrate this method, we estimated
the uncertainty in modeled results from the Project
MOHAVE field program in the complex terrain of
the southwestern USA (Green, 1999). We chose this
case for several reasons: (1) this is a well studied
area, providing a rich observational database,
including a tracer study; (2) multiple model results
are available and have been evaluated extensively
(Koračin and Enger, 1994; Yamada, 2000); and 3)
uncertainty in transport has been analyzed already
(Koračin et al., 2000). Therefore, this project
provides a unique opportunity for demonstrating a
methodology for the uncertainty analysis.

The Project MOHAVE field program included
comprehensive meteorological, chemical, and tracer
measurements. Tracer measurements allow us to
simplify the procedure for uncertainty estimates.
oPCDH inert tracer gas was released from a 152-m
tall stack at a rate proportional to power produc-
tion (Green, 1999). Daily tracer concentrations
collected at eleven receptors from 6 to 12 August
1992 were used for analysis.

Lagrangian particle models are widely used to
simulate dispersion for various air quality and
emergency response applications (Draxler and Hess,
1997). In this study, we used a Lagrangian random
particle (LAP) dispersion model (Koračin et al.,
1998, 1999) with meteorological inputs from Me-
soscale Model 5 (MM5) (Grell et al., 1994). The
LAP model was developed following basic concepts
described by Pielke (1984), for example. Concepts of
the model structure and applications are shown by
Koračin et al. (1998, 1999). Model parameterization
includes an option of spatially and temporarily
variable (Hanna, 1982) or constant time scales
(Gifford, 1995), a drift correction term (Legg and
Raupach, 1982), a plume rise algorithm, and three
optional turbulence parameterizations (Donaldson,
1973; Mellor and Yamada, 1974; Andrén, 1990).
Choosing different turbulence parameterizations,
which allows us to estimate uncertainty due to model
physics, is an essential part of the model capabilities.
Meteorological input to the LAP model includes 3D
fields of U, V, and W wind components, and
potential temperature simulated by MM5. Details
of the MM5 setup are shown in Koračin et al. (2000),
but some of the main features are highlighted here.

First, the model was run for the period from 6 to
12 August 1992 in a non-hydrostatic mode with
3 km horizontal resolution. Second, the model
domain consisted of 124� 91 horizontal grid points
and 35 vertical levels. One of the obvious choices to
improve prediction of meteorological fields is to
increase the vertical resolution of the model grid.
Third, besides a baseline simulation that is described
by Koračin et al. (2000), we have performed
simulations with five additional vertical levels within
the first 3 km and with each turbulence scheme. This
increased vertical resolution improved meteorologi-
cal model results and the accuracy of the predicted
tracer concentrations.

Fig. 1 shows the model domain including the
complexity of the terrain and a top view of the
simulated particle distribution for the model runs
with all three turbulence parameterization options.
The figure also illustrates differences in particle
distribution due to the treatment of turbulence
transfer with respect to channeling along the
Colorado River Valley and particle entrapment in
the Grand Canyon. Note that differences among
simulated particle distributions are apparent, but
statistical tests are needed to quantify the differ-
ences (see Sections 5 and 6).

Tables 1 and 2 show daily averages of measured
and simulated tracer concentrations at 11 receptors
for the period from 6 to 12 August 1992 for the
model runs with three optional turbulence para-
meterizations applied to the baseline simulations
(Table 1) and the simulation with increased vertical
resolution (Table 2). Figs. 2a and b show a
comparison among concentrations as measured
and as predicted by the three schemes for a baseline
simulation (Fig. 2a) and the runs with increased
vertical resolution (Fig. 2b).
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Fig. 1. Top view of simulated particle distribution using three optional turbulence parameterizations (Andrén—red, Donaldson—yellow,

and Yamada—blue dots) on 6 August 1992 at 1200 UTC (see text and Tables 1 and 2 for details).

Table 1

Average daily concentrations of tracer (fl l�1) for a baseline case measured and simulated by the LAP model with three optional turbulence

parameterizations using MM5 results as meteorological input

Station No. 1 2 3 4 5 6 7 8 9 10 11

Measurements DATE COCO DOSP HOPO LVWA MEAD MOSP OVBE SPMO SQMO TRUX YUCC

6-Aug-92 4.52 1.33 0.025 0.64 1.27 0.23 1.53 2.58 0.04 0.04 0.11

7-Aug-92 5.5 0.39 0.109 1.02 0.755 0.2 1.39 0.1 0.07 0.06 0.04

8-Aug-92 2.14 1.29 0.065 1.32 2.095 0.18 1.83 0.04 0.03 0.03 0.03

9-Aug-92 4.81 1.84 0.23 1.31 1.71 0.16 1 0.12 0.12 0.08 0.08

10-Aug-92 4.97 1.57 0.035 2.2 0.135 0.8 0.54 0.35 0.05 0.05 0.08

11-Aug-92 4.2 0.91 0.04 2.74 0.835 1.12 0.87 0.04 0.04 0.06 0.05

12-Aug-92 3.67 0.33 0.055 2.58 0.51 1.24 0.6 0.59 0.04 0.1 0.13

Andren DATE COCO DOSP HOPO LVWA MEAD MOSP OVBE SPMO SQMO TRUX YUCC

6-Aug-92 35.743 0.138 0.140 4.506 1.673 0.000 0.620 0.000 0.000 0.004 0.000

7-Aug-92 46.405 0.082 0.192 4.880 1.398 0.000 4.507 0.000 0.000 0.000 0.000

8-Aug-92 54.732 0.482 1.490 5.250 5.800 0.000 5.419 0.007 0.000 0.018 0.000

9-Aug-92 25.900 0.095 0.080 0.010 0.611 0.000 1.843 1.033 0.436 0.332 0.000

10-Aug-92 70.731 0.187 0.015 6.203 1.228 0.000 2.293 0.112 0.410 0.229 0.000

11-Aug-92 85.637 0.235 0.054 7.912 3.847 0.000 7.378 1.803 0.068 0.124 0.086

12-Aug-92 29.670 0.292 0.117 20.169 2.321 0.000 13.397 0.002 0.012 0.007 0.000

Donaldson DATE COCO DOSP HOPO LVWA MEAD MOSP OVBE SPMO SQMO TRUX YUCC

6-Aug-92 20.577 0.263 0.037 0.841 0.126 0.000 0.055 0.000 0.000 0.109 0.000

7-Aug-92 27.552 0.243 0.095 0.287 0.289 0.000 1.061 0.000 0.000 0.000 0.000

8-Aug-92 23.464 0.278 1.184 0.437 0.396 0.000 0.827 0.000 0.000 0.000 0.000

9-Aug-92 13.586 0.110 0.052 0.000 0.531 0.000 0.105 0.106 0.103 0.234 0.000

10-Aug-92 25.364 0.199 0.006 1.162 0.074 0.000 0.365 0.065 0.239 0.224 0.000

11-Aug-92 33.027 0.381 0.003 0.551 0.295 0.002 0.147 0.420 0.070 0.040 0.156

12-Aug-92 18.066 0.684 0.005 1.298 0.769 0.002 1.233 0.019 0.086 0.027 0.032

D. Koračin et al. / Atmospheric Environment 41 (2007) 617–628 621
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Table 2

Average daily concentrations of tracer (fl l�1) for model runs with increased vertical resolution measured and simulated by the LAP model

with three optional turbulence parameterizations using MM5 results as meteorological input

Station No. 1 2 3 4 5 6 7 8 9 10 11

Measurements DATE COCO DOSP HOPO LVWA MEAD MOSP OVBE SPMO SQMO TRUX YUCC

6-Aug-92 4.52 1.33 0.025 0.64 1.27 0.23 1.53 2.58 0.04 0.04 0.11

7-Aug-92 5.5 0.39 0.109 1.02 0.755 0.2 1.39 0.1 0.07 0.06 0.04

8-Aug-92 2.14 1.29 0.065 1.32 2.095 0.18 1.83 0.04 0.03 0.03 0.03

9-Aug-92 4.81 1.84 0.23 1.31 1.71 0.16 1 0.12 0.12 0.08 0.08

10-Aug-92 4.97 1.57 0.035 2.2 0.135 0.8 0.54 0.35 0.05 0.05 0.08

11-Aug-92 4.2 0.91 0.04 2.74 0.835 1.12 0.87 0.04 0.04 0.06 0.05

12-Aug-92 3.67 0.33 0.055 2.58 0.51 1.24 0.6 0.59 0.04 0.1 0.13

Andren DATE COCO DOSP HOPO LVWA MEAD MOSP OVBE SPMO SQMO TRUX YUCC

6-Aug-92 15.593 1.126 0.5291 3.6198 0.8679 0 1.071 0 0 0 0

7-Aug-92 17.652 1.224 0.399 4.5167 1.4314 0 2.506 0 0 0.002 0

8-Aug-92 23.36 1.221 1.0539 2.0336 1.4077 0 2.1 0.004 0 0 0

9-Aug-92 4.5178 0.578 0.2377 0.1721 1.1571 0 2.152 0.296 0.194 0.425 0.944

10-Aug-92 37.613 0.186 0.1678 0.2828 1.3658 0.02 1.125 1.736 1.081 0.287 1.624

11-Aug-92 9.5055 0.395 0.0301 0.214 0.0785 0.041 0.36 0.501 0.271 0.34 2.132

12-Aug-92 33.754 0.753 0.0764 1.1883 0.9582 0.009 1.933 1.239 0.209 0.175 0.387

Donaldson DATE COCO DOSP HOPO LVWA MEAD MOSP OVBE SPMO SQMO TRUX YUCC

6-Aug-92 10.383 0.437 0.2592 2.0142 0.3054 0 0.137 0 0 0 0

7-Aug-92 14.89 0.574 0.0656 0.6485 0.1506 0 0.336 0 0.009 0.03 0

8-Aug-92 15.274 0.314 0.357 0.2699 0.1925 0 0.299 0 0 0 0

9-Aug-92 5.6577 0.202 0.0742 0.014 0.1807 0 0.255 0.343 0.034 0.145 0.319

10-Aug-92 6.4202 0.144 0.0602 0.028 0.1538 0.005 0.479 0.194 0.565 0.238 0.312

11-Aug-92 7.7085 0.027 0.0032 0.0226 0.0032 0.004 0.022 0.374 0.068 0.052 0.767

12-Aug-92 10.139 0.099 0.0183 0.129 0.0946 0.009 0.083 0.009 0.116 0.052 0.154

Yamada DATE COCO DOSP HOPO LVWA MEAD MOSP OVBE SPMO SQMO TRUX YUCC

6-Aug-92 13.224 1.179 0.7657 2.5111 0.6001 0 0.532 0 0 0 0

7-Aug-92 16.011 1.33 0.3689 2.867 1.0206 0 2.304 0 0 0.002 0

8-Aug-92 22.001 1.257 1.1303 1.7142 1.5464 0 1.546 0.001 0 0 0

9-Aug-92 3.7672 0.53 0.2312 0.1108 1.0238 0 1.783 0.23 0.14 0.416 0.447

10-Aug-92 36.488 0.157 0.1645 0.2839 1.0679 0.014 0.98 1.463 0.98 0.324 1.412

11-Aug-92 8.2785 0.479 0.0258 0.2054 0.0678 0.015 0.307 0.444 0.307 0.387 1.103

12-Aug-92 30.883 0.787 0.0764 1.0604 0.7205 0.014 1.988 0.888 0.132 0.193 0.326

Table 1 (continued )

Station No. 1 2 3 4 5 6 7 8 9 10 11

Yamada DATE COCO DOSP HOPO LVWA MEAD MOSP OVBE SPMO SQMO TRUX YUCC

6-Aug-92 35.300 0.116 0.146 4.700 1.632 0.000 0.654 0.000 0.000 0.001 0.000

7-Aug-92 47.601 0.102 0.173 4.064 1.447 0.000 4.745 0.000 0.000 0.000 0.000

8-Aug-92 55.293 0.478 1.411 4.852 5.887 0.000 5.173 0.000 0.000 0.018 0.000

9-Aug-92 23.286 0.098 0.075 0.002 0.549 0.000 1.834 0.842 0.505 0.340 0.000

10-Aug-92 75.468 0.211 0.006 5.640 1.384 0.000 2.779 0.036 0.409 0.324 0.001

11-Aug-92 88.662 0.222 0.047 7.684 3.885 0.000 7.502 1.695 0.046 0.121 0.086

12-Aug-92 30.453 0.272 0.126 19.044 2.389 0.002 12.025 0.005 0.020 0.009 0.000

D. Koračin et al. / Atmospheric Environment 41 (2007) 617–628622
Tables 1 and 2 are used in this study to calculate
fractional model error on the left-hand side of Eqs.
(1) and (2).
Tracer concentrations predicted by the LAP
model agreed fairly well with measured concentra-
tions and yielded a similar order of magnitude. In
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Fig. 2. Scatter plot of measured versus modeled daily tracer

concentrations using three optional turbulence parameterizations

(Andrén ‘‘x’’; Donaldson ‘‘o’’; and Yamada ‘‘+’’) for a baseline

case (a) and the run with increased vertical resolution (b). Values

for all receptors are shown for the period 6–12 August 1992.
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the case of the baseline run, the model significantly
overestimated concentrations at the receptor
(COCO) nearest the source. The use of higher
vertical resolution efficiently reduced the highest
overestimated concentrations at the nearest receptor
for all three optional turbulence parameterizations,
but overestimated several low concentrations. The
former effect reduces some of the statistical error
parameters, while the latter effect lowers the
correlation coefficient.

To estimate the dispersion error from Eq. (3),
errors due to emission, measurements, and atmo-
spheric models must be determined. Then the
solution of the system will yield estimates of the
mean and standard deviation of the dispersion
model error (Ed).

4.1. Emission error

The tracer was released mainly at a rate propor-
tional to the plant power production. Variation in
power production, however, could not have been
followed exactly by variation in tracer emission.
According to Green (1999), the ratio of power
production to tracer release rate had a standard
deviation of 6.9%. Since there is no precise
information on the actual tracer emission and its
uncertainty, we assumed that the emission error
could be represented by the normal distribution
N(Em, se

2) with a zero mean and normalized
standard deviation of the emission error (se)
of 10%.

4.2. Measurement error

Green (1999) reported an uncertainty in tracer
measurements (DM) of 70.052 fl l�1. For this field
program, the background concentration was esti-
mated as 0.56 fl l�1 and subtracted from all mea-
sured samples. The reported uncertainty in the
background value (DCb) was 70.06 fl l�1. To
assume the maximum value of measurement un-
certainty due to simultaneous uncertainties in the
measurement procedure (DM) and estimation as
well as variability of the background concentration
(Cb), we assumed that the normalized measurement
error could be expected in the range (�Em, +Em)
with Em estimated from:

Em ¼
DM þ DCb

Co þ Cb
¼

0:112

Co þ Cb
. (7)

Since measurement error can be expected in the
range [�Em, +Em], the absolute value of Em can be
used as a measure of the standard deviation around
the zero mean [N(0, sm

2 )].
As shown in Eq. (7), measurement error depends

on Co. In the statistical sense, we would like to find
the most probable range for the measurement error.
To estimate sm

2 , we have a choice of values for Co in
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Table 3

Estimates of the success of MM5 wind fields and corresponding

atmospheric model error according to the Tracer Potential (TP)

method for the base run (‘‘base’’) and the run with increased

vertical resolution (‘‘vert’’)

Day no. Day TP_base

(%)

Ea_base TP_vert

(%)

Ea_vert

1 6-Aug-92 4.7 0.95 13.1 0.87

2 7-Aug-92 13.9 0.86 26.0 0.74

3 8-Aug-92 14.7 0.85 24.3 0.76

4 9-Aug-92 6.4 0.94 23.9 0.76

5 10-Aug-92 8.0 0.92 18.5 0.82

6 11-Aug-92 15.8 0.84 28.7 0.71

7 12-Aug-92 12.9 0.87 21.5 0.79
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Eq. (7). The choices for Co range from zero, which
will yield the most conservative estimate of sm

2 ,
through minimum or average observed concentra-
tion to maximum observed concentration, which
corresponds to the smallest estimate of sm

2 . We
applied all four choices for Co to our model,
obtaining minimal differences in the MLEs for m
and s.

4.3. Atmospheric model error

Atmospheric model error was determined via
results from the method of evaluating atmospheric
models using tracer measurements (Koračin et al.,
2000). They used daily averages of tracer concentra-
tions to estimate daily success of four modeled wind
fields. The method uses a cost function (Tracer

Potential, hereafter TP) to quantify the success of a
particular atmospheric model in representing tracer
transport. A full description of the method is given
by Koračin et al. (2000). Table 3 shows estimates of
the success (TP) of MM5 atmospheric model runs
for the baseline case and the run with increased
vertical resolution (present study). The value of the
atmospheric model error is then represented by the
value of 1-TP and used as input in Eqs. (3) and (4)
for the days considered in this study.

Since TP is a measure of the normalized success
of the MM5 wind fields, we assumed that atmo-
spheric model error Ea,i for a particular day i is
equal to the value (1-TP) for that day. Since
atmospheric error can be expected in the range
[�Ea,i,+Ea,i], the absolute value of Ea,i can be used
as a measure of the standard deviation around the
zero mean [N(0, sa,i

2)].
Since emission and measurement errors were

assumed constant in time, it is valuable to consider
a simplified case with the atmospheric model error
constant in time, as well. In that case, sa

2 can be
taken as a statistic of (1-TP) daily series—such as
average, maximum or minimum. Tests with max-
imum and average (1-TP) as sa

2 showed negligible
difference in the MLEs for s and, of course, do not
affect the MLE of m.

4.4. Stochastic component of the error

The stochastic component (Es) of the fractional
total error in Eq. (3) is caused by the stochastic
nature of turbulent diffusion in the atmosphere.
This error is represented by the normal distribution
[N(0, s2)] with zero mean and variance that is
determined jointly with the dispersion error using
maximum likelihood estimation.

5. Estimation of the dispersion error using a

developed stochastic model

Errors due to emission and measurements are
well defined for a given set of observations, while in
contrast, atmospheric error depends on selection of
how the meteorology is diagnosed or predicted.
Variability of success in reproducing atmospheric
processes and their implications on the estimation
of dispersion error is an important issue that has to
be further investigated. As we discussed in the
previous sections, one of our choices was to improve
vertical resolution of the atmospheric model and
estimate the possible improvement in simulating
atmospheric fields. Improved vertical resolution
generally implies better treatment of vertical trans-
port and mixing that can usually improve model
results. Simple reasoning could lead to the conclu-
sion that reduced atmospheric error in the balance
equation, such as Eqs. (3) and (4), imposes an
increase in dispersion error. Improved treatment of
meteorology, however, generally causes better
treatment of dispersion processes and reduces model
fractional error on the left-hand side of Eqs. (3) and
(4). Consequently, although the dispersion estimates
are improved, model error can be similar to the
previous case that is based on less successfully
predicted or diagnosed meteorological fields.

To investigate the hypothesis that the essence of
the dispersion error should be more or less quasi-
invariant to variations of the error in the atmo-
spheric representation, we calculated dispersion
error using the baseline case and also calculated
dispersion error using a case of improved MM5
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Table 4

Estimates of dispersion model fractional error m and the standard

deviation of stochastic components of the error s for three model

formulations for the base run (‘‘base’’) and the run with increased

vertical resolution (‘‘vert’’)

Model Base case Increased vertical

resolution

m s m s

Andren 2.97 6.81 �2.74 6.62

Donaldson �0.47 2.27 �0.44 2.70

Yamada �2.92 6.62 2.70 5.55

Values were calculated for all days and all receptors and for daily

variable atmospheric model error.
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results based on higher vertical resolution. Table 4
shows estimates of dispersion model error and the
standard deviation of the stochastic component of
the error for two respective MM5 simulations with
different vertical resolutions.

Results indicated that both the expected normal-
ized dispersion error and standard deviation of the
stochastic error are large and could be up to a factor
of three among the runs using different turbulence
schemes. Dispersion error appears to be strongly
dependent on basic structure of the dispersion
model, such as selection of a turbulence scheme.
Increased vertical resolution of the atmospheric
model efficiently reduces model error for all
schemes. Andrén’s scheme is essentially a modifica-
tion of the Yamada scheme and, consequently,
yields similar dispersion error and standard devia-
tion of stochastic error estimates. Model results
using the Donaldson scheme create approximately
five times smaller dispersion error and two times
smaller standard deviation of the stochastic error
compared to Andrén’s and Yamada’s schemes. All
schemes produce negative values of dispersion error
indicating that they generally overestimate measure-
ments.

We used the MM5 baseline case to test several
options in treating the atmospheric model error as
constant throughout the simulation period as well
as being daily variable. As mentioned earlier,
dispersion error computation is further complicated
by the fact that Co appears in both the fractional
error (left-hand side of Eqs. (3) and (4)) and the
measurement error (right-hand side of the same
equations). To simplify the computation, we
assumed a constant number (average of all observa-
tions) for Co in Eq. (7), but also a zero value for Co
to represent the largest possible measurement error.
We also examined the joint effect of variation of
atmospheric error and measurement errors on
computation of dispersion error and the standard
deviation of the stochastic component of the error.

First, we assumed all error components are time
independent. In this case, we assumed the largest
(conservative) value for the standard deviation of
the measurement error (Em) and assumed that the
standard deviation of the atmospheric error (Ea)
was the same for all days. Consequently, the
standard deviations sm and sa,i are constant during
the computation procedure. We tested two cases for
the choice of the common value of the variance of
the atmospheric error: the mean (0.891) and
maximum (0.953) of (1-TP). We also explored
different values for Co in the equation for
sm ¼ ðDM þ DCbÞ=ðCo þ CbÞ, namely the most
conservative value of 0, then the minimum Co

(0.005), the mean Co (0.9578), and the maximum Co

(5.5). Different values of Co produce different
values for sm ¼ ð0:052þ 0:06Þ=ðCo þ 0:56Þ ¼
0:112=ðCo þ 0:56Þ. A selection of various values of
Co and sa did not have a significant impact on the
value of ŝ, which varied only up to 1%. We also
considered a situation where atmospheric model
error is time dependent. Since in this case there is no
explicit formula for ŝ, we had to estimate ŝ using a
numerical optimization (maximization) process. We
chose to use the log-likelihood function. The results
indicate a very small difference in the concentration
estimates as compared to the previous simple case.
6. Performance measure tests

We computed statistical performance measures to
evaluate model results with various turbulence
parameterizations and various vertical resolutions
of the model grid. We used the same measures
reported by Hanna (1989). For each individual
model run, the following statistics were computed
for modeled and observed concentrations normal-
ized by the emission rate:
�
 Mean difference between the observed and
predicted concentrations.

�
 Normalized mean square error (NMSE).

�
 Correlation between observations and model

predictions and percent of model-predicted con-
centrations within a factor of two with respect to
observed concentrations.
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Table 5

Statistical performance measures for baseline simulations

(‘‘base’’) and simulations with improved vertical resolution

(‘‘vert’’)

Model_run Obs
Q

Pred
Q
� Obs

Q
NMSE r % factor

of 2

Don_base 0.43 0.60 16.2 0.79 85.7

And_base 0.43 2.23 41.3 0.78 66.2

Yam_base 0.43 2.25 43.5 0.77 66.2

Don_vert 0.43 0.05 5.2 0.72 87.0

And_vert 0.43 0.69 15.1 0.68 67.5

Yam_vert 0.43 0.57 14.4 0.67 71.4

Values were calculated for a case with daily variable atmospheric

model error.
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The model runs also were compared in pairs to
test any statistically significant differences in their fit
to the observed data. Pairing was done in space and
time. All tests were two sided and performed at the
5% significance level. Test statistics were computed
using a bootstrap technique (Cox and Tikvart,
1990) and following a procedure by Hanna (1989).
Bootstrap is a statistical resampling technique for
nonparametric inference (see e.g., Efron and Tib-
shirani, 1993). We used 1000 re-samples. Then,
empirical percentiles of the differences were com-
puted which allowed for making decisions. If the
interval between the 2.5th and 97.5th empirical
percentiles includes zero, we concluded (on the 5%
significance level) that the difference between the
values of statistic for the two models was not
significantly different from zero. Performance mea-
sures for all models and results of these comparisons
are reported in Table 5. The table shows that model
differences in statistical parameters are affected by
selection of the turbulence parameterization.

Schemes with similar algorithms (Andrén and
Yamada) produced similar statistical parameters
compared with measurements. Donaldson’s scheme,
for example, yielded the highest correlation coeffi-
cient, the smallest mean normalized differences
between the model and measurements, the smallest
NMSE, and the largest number of predicted values
that fall within a factor of two of measured values.
Higher vertical resolution improved all statistical
parameters, except the correlation coefficient. Mod-
el runs with higher vertical resolution eliminated
over predictions of some of the high concentrations
and consequently reduced NMSE (by a factor of
2–3) and the mean normalized differences between
the model and measurements, as well as increased
the number of predicted concentrations that are
within a factor of two of measured concentrations.
Model runs with higher vertical resolution over
predicted some of the lower concentrations, how-
ever, and consequently reduced the correlation
coefficient by about 10–14% for all schemes.

Statistical comparison between measurements
and various model runs, as well as among the
model runs themselves, yielded the following results:
(a)
 Mean differences between measured and mod-
eled concentrations are not significantly differ-
ent from zero at the 5% significance level. This
is true for the run with Donaldson’s scheme
(improved vertical resolution).
(b)
 Pairs of models for which the difference in mean
differences between the measured and modeled
concentrations is not significantly different from
zero (5% significance level). This is true for the
runs with Andrén’s scheme (baseline simulation)
and Yamada’s scheme (baseline simulation).
(c)
 Pairs of models for which differences in mean
square error are not significantly different from
zero (5% significance level). This is true for (1)
the run with Donaldson’s scheme (improved
vertical resolution) and the run with Andrén’s
scheme (improved vertical resolution); (2) the
run with Donaldson’s scheme (improved verti-
cal resolution) and the run with Yamada’s
scheme (improved vertical resolution); and (3)
the run with Andrén’s scheme (baseline simula-
tion) and the run with Yamada’s scheme (base-
line simulation).
(d)
 Models for which the correlation coefficient
between measured and predicted concentrations
is not significantly different from zero. This is
true for none (i.e., all correlation coefficients are
significantly different from zero).
(e)
 Pairs of models for which the difference between
the correlation coefficients of the measured and
predicted concentrations are not significantly
different from zero. This is true for none (i.e., all
pairs of model runs have nonzero difference
between their correlations with observations).
(f)
 Pairs of models for which the difference in
‘‘percent is within the factor of two’’ statistic is
not significantly different from zero. This is true
for (1) the run with Donaldson’s scheme (base-
line simulation) and the run with Donaldson’s
scheme (improved vertical resolution); (2) the
run with Andrén’s scheme (baseline simulation)
and the run with Andrén’s (improved vertical
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resolution); and (3) the run with Yamada’s
scheme (baseline simulation) and the run with
Yamada’s scheme (improved vertical resolu-
tion).
In summary, all model runs with various turbu-
lence parameterizations have significant correlation
with measurements. The runs with the Donaldson
scheme appear to achieve better agreement with
measurements and consequent performance mea-
sures. The schemes with a similar algorithm
(Yamada and Andrén) create similar performance
measures and similar dispersion model error.
Increased vertical resolution appears to improve
performance measures and reduce dispersion model
error.

7. Summary and conclusions

We applied a method based on a stochastic
approach of estimating model dispersion error to a
case study of the propagation of tracers in complex
terrain. The method was based on a combination of
model fractional error-by-error components due to
the emission, measurement, atmospheric and dis-
persion models, and stochastic processes. Based on
a study by Koračin et al. (2000), total model error
has been decomposed into separate errors due to
atmospheric and dispersion models. Error compo-
nents due to emission, measurement, and the
atmospheric model were determined from measure-
ments and modeling, and, in order to account for
the compensating nature of error components, they
were represented in the method algorithm in terms
of a normal distribution with a specified mean and
standard deviation. Error due to stochastic pro-
cesses was represented in the method algorithm as a
normal distribution with zero mean and unknown
standard deviation. Dispersion model error and the
standard deviation of the error due to stochastic
processes then represent unknown numbers in the
equation for fractional model error. Our methodol-
ogy found solutions for dispersion error and the
standard deviation of the stochastic error compo-
nent using the maximum likelihood estimation. Two
types of solutions are discussed: a simple one with
time-independent error components as well as a
complex solution with one of the errors, namely
atmospheric error, diurnally variable. We con-
ducted a series of sensitivity tests to investigate the
impact of particular error components on the
estimate of dispersion error and standard deviation
of the stochastic component of the error. Our results
show that the method results are robust on
variation of the estimates of the known error
components and yield stable solutions of the
dispersion model error and standard deviation of
the stochastic error.

We applied the developed method to observed
and modeled tracer concentrations in complex
terrain. The daily tracer concentrations for a period
of seven days measured at 11 receptors and
simulated by a Lagrangian random particle disper-
sion model that was using MM5 atmospheric
simulation results were used to compute all error
components. Two major structural components
(turbulence parameterization and model vertical
grid resolution) of the Lagrangian random particle
model were investigated. Although model results
achieved noticeably high correlation for all turbu-
lence schemes compared to measurements (from
0.77 to 0.79), the dispersion errors were large (up to
a factor of three) among model runs with various
turbulence schemes. The range spread in the
computed dispersion error also can be seen in the
spread of other statistical performance measures
shown in Table 5. These results confirm the
importance of treating turbulence transfer in
dispersion models and their effect on the accuracy
of modeled dispersion. We also tested the same
method of estimating dispersion model error by
improving the vertical resolution of the atmospheric
model for the same case. Increased vertical resolu-
tion in the atmospheric model generally improved
the results from the statistical comparison between
the simulated and measured concentrations but did
not significantly improve magnitude of the disper-
sion error. As expected, the study confirms that one
of the main structural components of the dispersion
model, namely the turbulence scheme, bears much
more importance on the magnitude of dispersion
model error compared to increased vertical resolu-
tion in the atmospheric model.
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